Feas as as compact closed category

CCC from profunctor category(2)

Let \(\mathcal{V}\) be a skeltal quantale. The category \(\mathbf{Prof}_\mathcal{V}\) can be given the structure of a compact closed category, with the monoidal product given by the product of \(\mathcal{V}\) categories.

Proof(1)
  • Monoidal product acts on objects:

    • \(\mathcal{X} \times \mathcal{Y}((x,y),(x',y'))\) := \(\mathcal{X}(x,x') \otimes \mathcal{Y}(y,y')\)

  • Monoidal product acts on morphisms:

    • \(\phi \times \psi((x_1,y_1),(x_2,y_2))\) := \(\phi(x_1,x_2)\otimes\psi(y_1,y_2)\)

  • Monoidal unit is the \(\mathcal{V}\) category \(1\)

  • Duals in \(\mathbf{Prof}_\mathcal{V}\) are just opposite categories

    • For every \(\mathcal{V}\) category, \(\mathcal{X}\), its dual is \(\mathcal{X}^{op}\)

    • The unit and counit look like identities

      • The unit is a \(\mathcal{V}\) profunctor \(1 \overset{\eta_\mathcal{X}}\nrightarrow \mathcal{X}^{op} \times \mathcal{X}\)

      • Alternatively \(1 \times \mathcal{X}^{op} \times \mathcal{X}\xrightarrow{\eta_\mathcal{X}}\mathcal{V}\)

      • Defined by \(\eta_\mathcal{X}(1,x,x'):=\mathcal{X}(x,x')\)

      • Likewise for the co-unit: \(\epsilon_\mathcal{X}(x,x',1):=\mathcal{X}(x,x')\)

Exercise 4-64(1)

TODO

Solution(1)

TODO

Exercise 4-65(1)

TODO

Solution(0)

TODO

Exercise 4-66(1)

Check that the proposed unit and counits do obey the snake equations.

Solution(0)

TODO